SADLER UNIT 4 MATHEMATICS METHODS

WORKED SOLUTIONS

Chapter 4 The normal distribution

Exercise 4A

Question 1

a $\frac{65-60}{5} = 1$ **b** $\frac{72-55}{10} = 1.7$ **c** $\frac{50-58}{4} = -2$ **d** $\frac{60-58}{4} = 0.5$ **e** $\frac{58-64}{8} = -0.75$

Question 2

Test A : $\frac{30-20}{4} = 2.5$ Test B : $\frac{50-60}{10} = -1$ Test C : $\frac{7-6}{0.8} = 1.25$ Test D : $\frac{26-25}{5} = 0.2$

Mathematics $\frac{56-60}{10.4} = -0.385$ Chemistry $\frac{74-72}{7.2} = 0.278$ Electronics $\frac{39-48}{14.6} = -0.616$ Computing $\frac{72-63}{7.4} = 1.216$ ∴ Computing, Chemistry, Mathematics, Electronics

Question 4

Subject	x	\overline{x}	σ	Z.
Mathematics	76	63	14	$\frac{76-63}{14} = 0.93$
English	75	64	10	$\frac{75-64}{10} = 1.1$
Science	78	72	8	$\frac{78 - 72}{8} = 0.75$
Social Studies	104	106	22	$\frac{104 - 106}{22} = -0.09$
		• •		

.: English, Mathematics, Science, Social Studies

$$x = 65.2, \sigma = 8.8$$

Jill: $\frac{74}{120}$ Jack: $\frac{63}{120}$
a 1
b 0
c -0.25

Exercise 4B

Question 1

Question 2

Edit Action Interactive	\times
	Þ
normCDf(-∞, 15, 10, 0)	
0.9331927987	
Þ	

Question 3

© Edit Action Interactive	X
$\overset{0.5}{\underline{}}_{\underline{}}^{1} \qquad \qquad$	h.
normCDf (-∞, 78, 25, 100)	
0.1894296548	
Þ	

© Edit Action Interactive
$ \stackrel{0.5}{\Longrightarrow} \stackrel{1}{2} f \to \int \stackrel{f dx}{dx} \text{Simp} \stackrel{f dx}{} \nabla \nabla \nabla \nabla \nabla \nabla \nabla \nabla \nabla $
normCDf(-0.5,∞,1,0)
0.6914624613

0	Edit /	Action	Inte	ractiv	/e			\times
0.5 <u>1</u> 1⇒2	₼►	∫dx ∫dx₊	Simp	<u>fdx</u>	Ŧ	₩	Ŧ	l l
norr	nCDf	(38,	∞,1	0,50)			
			().88	49	3032	98	
þ								

Question 6

Question 7

Question 10

Question 11

P(X < -1.4) = 0.0808

$$P(-1.4 < X < k) = P(X < k) - P(X < -1.4)$$

0.7215 = P(X < k) - 0.0808
$$P(X < k) = 0.8023$$

k = 0.85 (2dp)

🜣 Edit Action Interactive	×
$\stackrel{0.5}{\longrightarrow} \stackrel{1}{2} \textcircled{h} \models \stackrel{fdx}{\int dx} \text{Simp} \stackrel{fdx}{\underbrace{ \int dx} \nabla \forall \forall \forall \forall \forall \forall \forall \forall \forall$	Þ
normCDf(-∞, -1.4, 1, 0)	•
0.08075665923	
Þ	

Question 14

P(X < 87.2) = 0.0808

P(87.2 < X < k) = P(X < k) - P(X < 87.2)

P(87.2 < X < k) = P(X < k) - P(X < 87.2)0.5964 = P(X < k) - 0.0808 0.6772 = P(X < k) k = 90.92 (2dp)

Question 16

Question 17

P(0.08 < X < k) = P(X < k) - P(X < 0.08)P(X < 0.08) = 0.0228

$$P(0.08 < X < k) = P(X < k) - P(X < 0.08)$$

$$0.3036 = P(X < k) - 0.0228$$

$$P(X < k) = 0.3264$$

$$k = 0.0955 (4dp)$$

Exercise 4C

Question 1

P(X < 0.5) = 0.6915

Question 2

P(X > -20) = 0.9088

Question 3

P(X > 28) = 0.8849

Question 4

P(X < 105) = 0.5793

Question 5

P(X > k) = 0.0418k = 1.73

Question 6

P(X < k) = 0.2776k = 37.64

Question 7

P(X < 20 + k) = 0.4342 + 00.5= 0.934220 + k = 27.54k = 7.54

C Edit Action Interactive	X					
$ \begin{array}{c c} 0,5 \\ \hline 1 \rightarrow 2 \end{array} \xrightarrow{fdx} \int dx \\ fdx \\ \hline fdx \\ $						
normCDf(-∞, 105, 25, 100)						
0.5792597094						

0	© Edit Action Interactive							X
$0.5 \xrightarrow{1}{1}$	₼►	∫dx ∫dx₊	Simp	<u>ſdx</u>	Ŧ	₩	•	Þ
invN	invNormCDf("R", 0.0418, 1, 0)							
	1.730169477							

0	Edit /	ction	Inte	ractiv	e			X
$\overset{0.5}{\clubsuit}\overset{1}{2}$	₽►	∫dx ∫dx↓	Simp	<u>fdx</u>	۳	₩	•	Þ
invN	invNormCDf ("L", 0. 2776, 4, 4							

C Edit Action Interactive	X
$\begin{array}{c} 0.5 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	4
NormCDf ("L", 0. 9342, 5, 20)	•
27.53911176	

P(12 < X < k) = 0.6 P(X < 12) = 0.02275 P(X < k) = 0.62275 ∴ k = 21.25

Question 9

 $P(X \ge 13.5) = 0.2266$

Question 10

P(218 < X < 255) = 0.6377

Question 11

P(X > k) = 0.8238k = 54.56

Question 12

а	P(X < 0.72) = 0.5828
b	P(X < 0.26) = -0.6433

c P(X < 0.89) = 1.2265

d P(X < 0.23) = -0.7388

© Edit Action Interactive								
$\overset{0.5}{\clubsuit}\frac{1}{2}$	₼►	∫dx ∫dx₽	Simp	<u>ſdx</u>	۳	₩	•	P.
<pre>iormCDf("L", 0. 62275, 4, 20)</pre>								
21.25084525								

0	Edit /	Action	Inte	ractiv	е			X
	₽₽	∫dx ∫dx₽	Simp	<u>fdx</u>	Ŧ	₩	•	P.
nor	mCDf	(13.	5,∞,	, 2, 1	2)			
			C).22	66:	2735	24	

0	Edit /	Action	Inte	ractiv	е			\times
$\overset{0.5}{\clubsuit}\overset{1}{2}$	₼►	∫dx ∫dx↓	Simp	<u>ſdx</u>	Ŧ	₩	Ŧ	Þ
nor	mCDf	(218	, 255	5,20	, 24	40)		
			C	.63	77(0658	67	

а P(X < 0.44) = 19.5© Edit Action Interactive $\stackrel{0.5}{\rightarrowtail} \frac{1}{2} \quad (f_{1}) \models \quad \int_{dx}^{dx} \quad \text{Simp} \quad \underbrace{\int dx}_{dx} \quad \forall \quad \forall \quad \forall$ v invNormCDf("L", 0.44, 3, 20) 19.54709235 b P(X < 0.74) = 21.9C Edit Action Interactive invNormCDf("L", 0.74, 3, 20) 21.93003622 С P(X < 0.33) = 18.7• Edit Action Interactive invNormCDf("L", 0.33, 3, 20) 18.6802605 d P(X < 0.85) = 23.1C Edit Action Interactive invNormCDf("L", 0.85, 3, 20)

Question 14

- **a** Each score is 1 standard deviation away from the mean: 68% = 0.68
- **b** Each score is 2 standard deviations from the mean: 95% = 0.95
- **c** Each score is 3 standard deviations from the mean: 99.7% = 0.997
- **d** Distribution has a mean of 20 and $\sigma = 6$

$$\frac{8-20}{6} = -2 \qquad \qquad \frac{32-20}{6} = 2$$

The scores are 2 standard deviations either side of the mean: 0.95

e Distribution has a mean of 10 and $\sigma = 2$

$$\frac{4-10}{2} = -3 \qquad \qquad \frac{16-10}{2} = 3$$

The scores are 3 standard deviations either side of the mean: 0.997

f Distribution has a mean of 0 and $\sigma = 1$

$$0.5 \times 0.68 = 0.34$$

g Distribution has a mean of 0 and $\sigma = 1$

$$P(X < 1) = P(X < 0) + P(0 < X < 1)$$

= 0.5 + 0.34
= 0.84

23.10930017

h

Distribution has a mean of 0 and $\sigma = 1$

$$P(X > 1) = 1 - P(X < 1)$$

= 1 - 0.84
= 0.16

i Distribution has a mean of 0 and $\sigma = 5$

5 is one standard deviation above the mean

P(X < 5) = 0.84

j Distribution has a mean of 60 and $\sigma = 10$

70 is one standard deviation above the mean

$$P(X > 70) = 0.16$$

Question 15

Let X represent the number of days duration for a naturally delivered human baby. $X \sim (280, 10^2)$

a
$$\frac{250-280}{10} = -3$$
$$\frac{310-280}{10} = 3$$
$$P(250 < X < 310) = 99.7\%$$

b
$$\frac{290-280}{10} = 1$$
$$P(X > 290) = 1 - P(X < 290)$$
$$= 1 - 84\%$$
$$= 16\%$$

c
$$\frac{260-280}{10} = -2$$
$$\frac{270-280}{10} = -1$$
$$P(260 < X < 270) = P(260 < X < 280) - P(270 < X < 0)$$
$$= \frac{95\%}{2} - \frac{68\%}{2}$$

=13.5%

Let *X* represent the weights of the components.

$$X \sim (500, 5^{2})$$

$$a \qquad \frac{495 - 500}{5} = -1$$

$$P(X < -1) = P(X < 0) - P(0 < X < -1) =$$

$$= 50\% - 34\%$$

$$= 16\%$$

b
$$\frac{490-500}{5} = -2$$

$$P(X < -1) = P(X < 0) - P(0 < X < 2) =$$

$$= 50\% - \frac{95}{2}\%$$

$$= 2.5\%$$

Question 17

Let X represent the weight of cereal contain in the box.

 $X \sim (310, 4^2)$

a P(X > 312) = 0.3085

b P(X < 300) = 0.0062

Question 18

Let *X* represent the lenths of the adult male lizards.

 $X \sim (17.5, 2.5^2)$

a P(X < 17.5) = 0.5

b
$$P(15 < X < 17.5) = 0.34$$

Let X represent the scaled scores in a national mathematics test.

 $X \sim (69, 12^2)$

a P(X > 75) = 0.3085

b P(66 < X < 75) = 0.2902

c
$$P(X < 45) = 0.0228$$

Question 20

Let *X* represent the heights of fully grown plants.

 $X \sim (30, 4^2)$

- **a** P(X > 35) = 0.1056 $0.1056 \times 100 = 10.56$ Approximately 11 plants
- **b** P(X < 25) = 0.1056 $0.1056 \times 100 = 10.56$ Approximately 11 plants
- c P(25 < X < 30) = 0.3944 $0.3944 \times 100 = 39.44$ Approximately 39 plants

Question 21

Let *X* represent the weight of the vitamin contained in 110 mL containers.

 $X \sim (44, 2.5^2)$

 $110\% \times RDI = 44$ RDI = 40 mgP(X < 40) = 0.0548

0	Edit /	Action	Inte	ractiv	e			X
$\stackrel{0.5}{\clubsuit} \frac{1}{2}$	₼►	∫dx ∫dx₊	Simp	<u>ſdx</u>	Ŧ	₩	•	Þ
nori	nCDf	(-∞,	40,2	2.5,	44)		
			I	0.05	47	9929	917	

Let X represent the scores obtained on a particular leaving exam.

 $X \sim (62, 12.5^2)$

a P(X > 80) = 0.0749 $0.0749 \times 5542 = 415.28$

Approximately 415 students

b P(X < 40) = 0.0392 $0.0392 \times 5542 = 217.27$

Approximately 217 students

c P(62-k < X < 62+k) = 0.462-k = 55.4k = 6.662+6.6 = 68.6

0	Edit <i>i</i>	Action	Inte	ractiv	e			X
$0.5 \xrightarrow{1}{1}$	₼►	∫dx ∫dx↓	Simp	<u>fdx</u>	Ŧ	₩	Ŧ	P.
nori	normCDf(80,∞, 12.5, 62)							
			0	.074	93	3699	953	

Stated to the nearest half mark, the middle 40% of scores fall between 55.5 and 68.5

Question 23

Let X represent the heights of adults.

$$X \sim (175, 10^2)$$

P(a < X < b) = 0.90By classpad, a = 158.5, b = 191.5

The shortest driver is 158.5 cm and the tallest 191.5 cm.

Let X represent the marks acheived in the exam.

 $X \sim (64, 12^2)$

The top 12% corresponds to the 88th percentile (12% scores higher

P(X < k) = 0.88k = 78.0998

The A/B cut off is 78%.

The next 25% percent corresponds to the 63rd percentile

P(X < k) = 0.63k = 67.9822

The B/C cut off is 68%.

P(X < k) = 0.23k = 55.1338

The C/D cut off is 55%.

P(X < k) = 0.08k = 47.1391

The D/F cut off is 47%.

Question 25

a P(X < k) = 0.2

 $\therefore 0.84$ standard deviations below mean

b
$$\frac{40-\mu}{5} = -0.84$$

 $40-\mu = -4.2$
 $\mu = 44.2$

0	🜣 Edit Action Interactive								
	৻৸►	∫dx ∫dx↓	Simp	<u>ſdx</u>	Ŧ	\Downarrow	Ŧ	Þ	
invN	lorm(CDf('	'L",(-C	D.2, D.84	1, 16:	0) 2123	36		

Let X represent time in minutes it takes for Monica to arrive at work.

 $X \sim (45, 5^2)$

a Monica will need to take more than 50 minutes to be classified as late

P(X > 50) = 0.1587

- **b** P(X < k) = 0.08k = 52.0254
 - 8:30-52.0254=7:38 a.m.

c
$$P(X < k) = 0.01$$

 $k = 56.6317$

8:30-56.63=7:33 a.m.

C Edit Action Interactive	\mathbf{X}
$\stackrel{0.5}{\longleftrightarrow} \stackrel{1}{2} \textcircled{h} \models \stackrel{fdx}{\int dx} \text{Simp} \stackrel{fdx}{\underbrace{\int} dx} \checkmark \checkmark \checkmark \checkmark$	Þ
normCDf(50,∞,5,45)	
0.1586552539	

Let X represent the annual rainfall in an area in south west WA.

 $X \sim (1200, 200^2)$

- a P(X < 800) = 0.0228 $0.0228 \times 100 = 2.28$ Approximately 2 years
- **b** P(X > 1500) = 0.0668 $0.0668 \times 100 = 6.68$ Approximately 7 years
- c P(800 < X < 1500) = 0.9104 $0.9104 \times 100 = 91.04$ Approximately 91 years

d
$$P(X < 1500 | X > 1300)$$

= $\frac{P(1300 < X < 1500)}{P(X > 1300)}$
= $\frac{0.2417}{0.3085}$
= 0.783

Question 28

Let X represent the weight of apples from the orchard.

 $X \sim (180, 40^2)$

a P(X > 250) = 0.0401 $0.0401 \times 1000 = 40.01$ Approximately 40 apples

b
$$P(X < 150 | X < 250)$$

 $= \frac{P(X < 150)}{P(X < 250)}$
 $= \frac{0.2266}{1 - 0.0401}$

= 0.2361

C Edit Action Interactive	X
$ \begin{array}{c c} 0,5 \\ \hline 1 \rightarrow 2 \end{array} (\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Þ
normCDf(250,∞,40,180) 0.04005915686	

0	© Edit Action Interactive								
$0.5 \frac{1}{2}$	৻৸►	∫dx ∫dx₽	Simp	<u>fdx</u>	Ŧ	₩	Ŧ	P.	
norr	normCDf(-∞, 150, 40, 180)								
			I	0.22	66	273	524		

b

- **a** $\mu = 1018, \sigma = 10$ P(X < 1000) = 0.0359
- c P(success) = 0.0359 P(at least 1) = 1 - P(none) $\binom{10}{0} (0.0359)^0 (0.9641)^{10}$ = 0.6938 1-0.6938 = 0.3062

P(X > 1025) = 0.2420

Question 30

a
$$\mu = 100, \sigma = 15$$

 $P(X > 135 | X > 125)$
 $= \frac{P(X > 135)}{P(X > 125)}$
 $= \frac{0.0098}{0.0478}$
 $= 0.2054$

b P(3, 4 or 5 with X > 120)P(X > 120) = 0.0912Binomial CDf (3, 5, 5, 0.0912) = 0.0066

Question 31

a $\mu = x, \sigma = 1.8$ Using a standard normal distribution, P(x < k) = 0.005k = -2.5758 © Edit Action Interactive

The labelled weight 500g is -2.5758 standard deviations under the mean $500 + 2.5758\sigma = x$ 500 + 2.5758(1.8) = 504.636 $\therefore 505$ grams

b $250 + 2.5758 \times 1.8 = 254.63$ $\therefore 255 \text{ grams}$

a $\mu = 500 \text{ g}, \sigma = 5 \text{ g}$ P(X < 490) = 0.0227 $\therefore \sim 2.3\%$

 $\boldsymbol{b} \qquad \mu = 500 \ g$

P(X < 490) = 0.015A score of -2.17 standard deviations below the mean = 490. $\frac{490-500}{\sigma} = -2.17$ $\sigma = \frac{490-500}{-2.17}$ = 4.6

0	Edit /	Action	Inte	ractiv	е			\mathbf{X}
$\overset{0.5}{\longrightarrow} \overset{1}{\xrightarrow{1}}$	∳►	∫dx ∫dx₽	Simp	<u>fdx</u>	۳	\Downarrow	•	Þ
invN	lorm(CDf ('	'L", _	0.01 -2.1	5, 70(1,0) 0903	78	

Exercise 4D

Question 1

See full answer in text.

Question 2

See full answer in text.

Question 3

See full answer in text.

Question 4

See full answer in text.

Question 5

See full answer in text.

Question 6

See full answer in text.

Question 7

See full answer in text.

Question 8

See full answer in text.

 $\frac{d}{dx}\ln(10x) = \frac{1}{x}$

Question 2

 $\frac{d}{dx}10\ln x = \frac{10}{x}$

Question 3

$$\frac{d}{dx}\left(\frac{x}{\ln x}\right)$$
$$=\frac{\ln x \times 1 - x \times \frac{1}{x}}{(\ln x)^2}$$
$$=\frac{\ln x - 1}{(\ln x)^2}$$

$$\frac{d}{dx}\ln\left[\left(x^{2}+1\right)^{3}\right]$$
$$=\frac{d}{dx}\left(3\ln(x^{2}+1)\right)$$
$$=3\times\frac{2x}{\left(x^{2}+1\right)}$$
$$=\frac{6x}{x^{2}+1}$$

$$\frac{d}{dx} \left[\ln \frac{(x-1)^3}{x+1} \right]$$

$$= \frac{d}{dx} \left(\ln(x-1)^3 - \ln(x+1) \right)$$

$$= \frac{d}{dx} \left(3\ln(x-1) - \ln(x+1) \right)$$

$$= \frac{3}{x-1} - \frac{1}{x+1}$$

$$= \frac{3(x+1) - (x-1)}{(x-1)(x+1)}$$

$$= \frac{3x+3-x+1}{(x-1)(x+1)}$$

$$= \frac{2x+4}{(x-1)(x+1)}$$

$$= \frac{2(x+2)}{(x-1)(x+1)}$$

Question 6

$$\frac{d}{dx}\log_5 x$$
$$= \frac{d}{dx}\ln x$$
$$= \frac{1}{\ln 5} \times \frac{1}{x}$$
$$= \frac{1}{x\ln 5}$$

Question 7

P(X > 1.5) = 0.0668

Question 8

 $\mathrm{P}(-20 < X < 20) = 0.6827$

Question 9

k = 1.32

C Edit Action Interactive									
$\overset{0.5}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$	«Ի►	∫dx ∫dx₊	Simp	<u>fdx</u>	Ŧ	₩	Ŧ	Þ	
normCDf(1.5,∞,1,0)									
			0.	066	80'	7201	27		

0	Edit /	Action	Inte	ractiv	е			X		
$0.5 \frac{1}{2}$	৻৸►	∫dx ∫dx₽	Simp	<u>fdx</u>	۳	\Downarrow	•	Þ		
norr	normCDf (-20, 20, 20, 0)									
			C	.68	268	8949	21			

0	© Edit Action Interactive								
$0.5 \frac{1}{2}$	৻৸►	∫dx ∫dx₽	Simp	<u>fdx</u>	Ŧ	₩	•	1	
invN	invNormCDf("L", 0. 9066, 1, 0)								
				1.3	20	1048	91		

k =18.25

Question 11

 $\frac{dy}{dx} = 3 \times \frac{1}{x}$ When x = e $\frac{dy}{dx} = \frac{3}{e}$

Question 12

$$\frac{dy}{dx} = x \times \frac{1}{x} + \ln x \times 1$$
$$= \ln x + 1$$
When $x = e$,
$$\frac{dy}{dx} = \ln e + 1$$
$$= 2$$

Question 13

 $P(X \ge 58) = 0.0038$

- **a** -0.202
- **b** -1.126
- **c** 0.332
- **d** -0.228

© Edit Action Interactive							X	
$\overset{0.5}{\clubsuit}\overset{1}{2}$	₼►	∫dx ∫dx₽	Simp	<u>ſdx</u>	Ŧ	₩	Ŧ	Þ
invNormCDf ("L", 0. 3632, 5, 2								

٥	Edit /	Action	Inte	ractiv	e			X
$\xrightarrow{0.5}{1}{2}$	₼►	∫dx ∫dx↓	Simp	<u>fdx</u>	۳	₩	•	Þ
normCDf(58,∞,3,50)								
0.00383038056								

© Edit Action Interactive	X				
$ \stackrel{0.5}{\longrightarrow 2} \stackrel{1}{\longrightarrow} \stackrel{fdx}{ \int dx_{+}} \operatorname{Simp} \stackrel{fdx}{ fdx_{+}} \nabla \qquad \qquad$	Þ				
invNormCDf ("L", 0.42, 1, 0)					
-0.2018934791					
invNormCDf("L", 0.13, 1, 0)					
-1.126391129					
invNormCDf("L",0.63,1,0)					
0.3318533464					
invNormCDf("L", 0. 41, 1, 0)					
-0.2275449766					

- Let *R* represent rainfall $R \sim N(11.2, 3.1^2)$
- a P(R < 6) = 0.04670.0467 × 365 = 17.0565 ∴ ≈ 17 days
- **b** P(R > 10) = 0.6507 $0.6507 \times 365 = 237.4900$ $\therefore \approx 237$ days
- C P(10 < R < 15) = 0.54050.5405 × 365 = 197.2905 ∴ ≈ 197 days

$$\int_{0}^{1} (ax^{2} + k) dx$$

$$= \left[\frac{ax^{3}}{3} + kx \right]_{0}^{1}$$

$$= \frac{a}{3} + k$$

$$\frac{1}{5} = \frac{a}{3} + k$$

$$\int_{0}^{2} (ax^{2} + k) dx$$

$$= \left[\frac{ax^{3}}{3} + kx \right]_{0}^{2}$$

$$= \frac{8a}{3} + 2k$$

$$\frac{8a}{k} + 2k = 1 \qquad \rightarrow \text{ Equation } 2$$

Solving simultaneously

$$a = 0.3, k = 0.1$$

$$E(X) = \int_0^2 xf(x) dx$$

$$= \int_0^2 (0.3x^2 + 0.1)x dx$$

$$= 1.4$$

$$Var(X) = \int_0^2 f(x)(x - \mu)^2 dx$$

$$= \int_0^2 (0.3x^2 + 0.1)(x - 1.4)^2 dx$$

$$= \frac{17}{75}$$

 $\int_0^\pi k \sin x \, dx = 1$

а

$$\begin{bmatrix} -k\cos x \end{bmatrix}_0^{\pi} = 1$$
$$-k\cos \pi - (-k\cos 0) = 1$$
$$-k(-1) - (-k \times 1) = 1$$
$$k + k = 1$$
$$2k = 1$$
$$k = \frac{1}{2}$$

 $\begin{aligned} \mathbf{b} & \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{2} \sin x \, dx \\ &= \left[-\frac{1}{2} \cos x \right]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \\ &= \frac{1}{2} \times \frac{\sqrt{2}}{2} - \left(-\frac{1}{2} \times \frac{\sqrt{2}}{2} \right) \\ &= \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} \\ &= \frac{2\sqrt{2}}{4} \\ &= \frac{\sqrt{2}}{2} \end{aligned}$

∴≈\$22 800

a
$$P(x) = R(x) - C(x)$$

$$= 1000x - (25\ 000 - 20\ 000\ ln\left(1 - \frac{x}{100}\right), x < 100$$

$$= 1000x - 25\ 000 + 20\ 000\ ln\left(1 - \frac{x}{100}\right), x < 100$$
b
$$P(x) = 1000x - 25\ 000 + 20\ 000\ ln\left(\frac{100 - x}{100}\right)$$

$$= 1000x - 25\ 000 + 20\ 000\ ln\left(\frac{1}{100}(100 - x)\right)$$

$$= 1000x - 25\ 000 + 20\ 000\ ln\left(\frac{1}{100} + \ln(100 - x)\right)$$

$$P'(x) = 1000 + 20\ 000\ \left(\frac{-1}{100 - x}\right), x < 100$$

$$0 = 1000 + 20\ 000\ \left(\frac{1}{x - 100}\right)$$

$$-1000 = \frac{20\ 000}{x - 100}$$

$$x - 100 = -20$$

$$x = 80$$

$$P(80) = 1000(80) - 25\ 000 + 20\ 000\ ln\left(\frac{20}{100}\right)$$

$$= 22.811.24$$

 Contraction
 Contraction

 V1:
 V1:

 V1:

a
$$P(X \le 2) = \frac{2^2 + 3(2) - 4}{36}$$

 $= \frac{1}{6}$
b $P(X \ge 2) = 1 - \frac{1}{6}$
 $= \frac{5}{6}$
c $P(X \le 3) = \frac{3^2 + 3(3) - 4}{36}$
 $= \frac{7}{18}$
 $P(3 \le X \le 5) = \frac{11}{18}$
d 0

Question 20

Let *K* represent the number of kilometres a new tyre lasts. $K \sim N(60\ 000,\ 8000^2)$

a $P(K < 45\ 000) = 0.0304$

b P(at least one lasts less than 45 000) = 1 - P(all last more than 45 000)= $1 - (1 - 0.0304)^2$ = 0.1162